Go to the documentation of this file.
14 #include <eigen3/Eigen/Dense>
19 #include <jsoncpp/json/json.h>
20 #include <jsoncpp/json/writer.h>
21 #include <sciplot/sciplot.hpp>
39 void Fit(Eigen::MatrixXd x_train, Eigen::MatrixXd y_train,
int epochs,
double learning_rate,
int batch_size);
41 void Evaluate(Eigen::MatrixXd y_tests, Eigen::MatrixXd y_true);
43 std::vector<Eigen::MatrixXd>
Predict(Eigen::MatrixXd input_data);
44 bool Save(std::string);
45 void Load(std::string);
52 std::vector<Layer*> m_layer;
53 std::vector<double> m_error;
55 void PlotData(
int epoch, std::vector<double> error);
bool Save(std::string)
Definition: network.cpp:167
Network()
Constructor of Network class.
Definition: network.cpp:30
std::vector< Eigen::MatrixXd > Predict(Eigen::MatrixXd input_data)
Definition: network.cpp:81
void Use(Loss *l)
Definition: network.cpp:71
This class is the Base class for all Layers types.
void Add(Layer *layer)
Definition: network.cpp:61
void Evaluate(Eigen::MatrixXd y_tests, Eigen::MatrixXd y_true)
Definition: network.cpp:156
int GetThreads()
Definition: network.cpp:261
This class is the Base class for all activation types.
This class allows the creation of a full connected (Dense) layer.
void Load(std::string)
Definition: network.cpp:192
void Fit(Eigen::MatrixXd x_train, Eigen::MatrixXd y_train, int epochs, double learning_rate, int batch_size)
Definition: network.cpp:111
void SetThreads(int thread)
Definition: network.cpp:256
~Network()
Definition: network.cpp:49
Definition: activation.h:10